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SUMMARY

OBJECTIVE

The objective of this work is to determine the performance of the maximum (or peak)
of estimates of the magnitude-squared coherence (MSC) on a passive ambiguity surface as a
detection statistic.

RESULTS

The method chosen to measure the objective was the receiver operating characteristic
(ROC) curves which plot the probability of detection versus the false alarm rate. To obtain
the ROC curves, the probability distribution function of the maximum value of the MSC
estimates for noise only, along with noise and signal present, are developed. These probability
distribution and density functions are then used to establish a Neyman-Pearson hypotheses
test for signal detection. The signal detection results are presented as ROC curves which de-
pend on the size of the surface over which the maximum is taken, the true coherence, and the
number of degrees of freedom of the individual estimates of the MSC. These results are then
extended to multiple coherence.
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I. INTRODUCTION

The determination of the probability distribution and density functions of the maxi-

mum (or peak) of estimates (of the magnitude-squared coherence) on a passive ambiguity

surface is the main focus of this report. This peak value of the estimate of the magnitude-

squared coherence (MSC) serves as a "data reduction" aid in processing the information con-

tained in the passive ambiguity surface (PAS). We obtain the probability distribution and

density functions in terms of the size of the surface over which the maximum is taken, the

true coherence. and the number of degrees of freedom of each individual MSC estimate.

These probability distribution and density functions are then used to characterize the signal

detection performance of the maximum MSC estimate.

In Section 2 we present a review and necessary background on the MSC estimate for

a single point on a PAS. The probability distribution function of the maximum value of the

MSC estimates for noise only. along with noise and signal present, are developed in Section 3.

These probability distribution and density functions are then used to establish a Neyman-

Pearson type hypotheses test for signal detection in Section 4. The signal detection results

are presented as ROC curves which depend on the size of the surface over which the maximum

is taken, the true coherence, and the number of degrees of freedom of the individual estimates.

In Section 5 we extend the results of Sections 3 and 4 to the case of the magnitude-squared
multiple coherence. Section 6 concludes with some final remarks regarding the relationships
between the parameters of the PAS and the detection performance.

2. BACKGROUND

Let X i t) and X,(t) be real. zero-mean Gaussian random processes which are jointly
wide-sense stationary. The correlation functions Rjkit) are defined by

R Mt= L)Xj (t+ s) XkS4

for .j, k = 1. 2. and the associated power spectral densities jk( f) are assumed to exist with

jkI) f' Rk)expI-i 27r ft) dt,

forj., k = I. 2. The magnitude-squared coherence (MSC) function is defined as the magnitude-

s quared of the cross-spectral density 0 1 - tf) divided by the product of the power spectral
densities 1 I1I(f 02, f). i.e.. the MS( function is defined by

_212
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when Ojj(f) > 0, and by 0 otherwise. The MSC function y2(f) measures the proportion of the
power of X 1, at frequency f, attributable to the linear regression of X I on X2 I I. 

An estimate of 72 (f) is formed from N independent (i.e., no overlap) segments of
data given by

N

F I (f k) F-* (f:k) (2)
/ (f) = k=l

N N
E IF, (f: k) 12 IF, (f:k) 12

k=l k=I

where Filff k) is the Fourier coefficient at the frequency f from the kth discrete Fourier
transform (DFT) sample of the process Xi(t). We note that Fi (f, k) is a complex Gaussian
random variable.

A passive ambiguity surface (PAS) is formed by comtensating the MSC estimate for
a range of time delays and doppler shifts. Specifically, to account for a time delay of r and
a doppler correction of 0 radians, the estimate of the MSC becomes

N2

F1 I(f.k) e-ikO F* (f; k-r)
- k=l

- (f , O ,0 =  1 31
N NE IFI(f:k12 E I F,(f:k-r) 12

k=l k=l

The passive ambiguity surface consists of a "grid" of points over which the MSC estimate is
computed for Atd distinct values of time delay T = JrI ..... rAtdI and for Ad distinct values

of doppler E = 1 0.1 0 AdI .Thus, the PAS contains a total of A = Atd • Ad points, each

of which is an estimate of the MSC. Also, the spacing of the time delays and doppler shifts
is assumed to give independent estimates of the magnitude-squared coherence. Again we
note that F I (f, k) eikO and F,* (f; k-r) are both complex Gaussian random variables.

For the sake of completeness we review the distribution and density functions for
the estimate of the MSC -y- (r, 0) at a single point of the PAS. The frequency f is assumed
to be fixed, and thus, the dependency of),- (f: r. 0) on f is suppressed. There are two cases

to consider:

1a) Signal absent. In this case the true value of the MSC is assumed to be zero.
The probability distribution function of (2) is given by 121



I)

F' (x IN, 3j2  0) 1- (I- x)N - I  (4)

72

for 0 < x < 1, and the probability density function is

f'-) (x I N, -y2 = 0) = (N - I)(! - x) N - 2  (5)
3N"

for 0 < x < 1, and N is the number of independent data segments. These follow from the

fact that the F i (f; k) in (2) are complex Gaussian random variables [21.

(b) Signal present. In this case the true value of the MSC is assumed to be nonzero.

The distribution function of (2) for nonzero true coherence is

F " (x IN , y2) x / 
1 -='2 

N

N-2

S l-l (-k, 
()'

2 ) 
6)

and the density function is

f"I)(xlIN, -2 = (N- II (- -") (lI- x)N-2(Hl- x32 12

2F I (I- N, I - N 1, x-) (7)

where ,F 1 (a. b: c" Z) is the Gaussian hypergeometric function defined by [3]

S(a)Q (b) ZQ
C: Z

2 I (a b .c Z =Q1)

Q=0

and (a)v is Pochhammer's symbol (a)V = F (a + Q)/F (a), i.e.,

(a) 0 =

(a)v = a(a + I)...a+- I). = 1, 2,

Note that when either a or b is a negative integer, then the 2 FI function is simply a poly-

nomial of finite degree. We also note that the distribution and density functions given in (4)

3



through (7) remain valid for the estimate given in (3) since the Fourier coefficients are, as
noted after (3), complex Gaussian random variables.

3. DISTRIBUTION OF THE MAXIMUM

In this section we derive the distribution function of the maximum of the estimate
of the magnitude squared coherence on a passive ambiguity surface. The estimates y2 (r, 0)
are assumed to be independent of each other and the total size of the surface is assumed to
contain A points. Theorem 1 was originally obtained in [41.

Theorem 1. Let ZA - max 1y2 (r. 0): reT, 0 e be the maximum over A inde-
pendent estimates of the (noise only) MSC where the true coherence is assumed to be zero
(7,2 = 0) for all values of T E T and 0 e E over which the maximum is taken. Then, the
distribution function of ZA is given by

0, x<0,

FZA(x IA,.N,-2= 0) exp I )N-1] , <x~ < 1,8

(L. I< x,

and the density function is

fZAI A, N, -y2=0) = A N-I) I-x)N-2 exp ILIx) N -  ,  (9)

for 0 < x < 1. and 0 otherwise.

Proof. The set of estimates 72 (r. 0)f are independent and identically distributed
with the common distribution function (4). By [5, p. 36], ZA has a type 3 asymptotic
distribution given by (8) since I - Fix) behaves like 0 (x0 - x) ca with 3 = 1, x0 = 1, and
a = N - I. That the density function is given by (9) follows immediately by differentiating
(8). 0

We note that if the distribution function (8) for ZA is expanded into a Taylor
series, then the first two terms of the series expansion gives the approximation

FZA(XIA, N,YI=0) 1- I-AIIx)N-)

which reduces to the distribution function of a single point (4) on the PAS for A = 1.
Figure 1 presents graphs of(5) and (9) for various values of A when the true coherence is
zero (i.e., noise only).

4
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Figure 1. Density functi ns fZA (x I A, N, 2 0) for ZA = max y-, the maxi-

mum of the estimates o the MSC with noise only present. (Surface size = A;
degrees of freedom = N: 'rue MSC = y2 .)

We now turn to the case when a signal is present, that is. when one estimate is

based oil data with a true MSC of Y2 * 0 and all of the other estimates on the surface have

only noise present. Thus. one estimate of the MSC has a distribution function given by 16),

while the remaining A-I estimates on the surface have a distribution function given by (4).
We now present

Theorem 2. Let ZA = max 1 ̂ 12 (r. 0) : (r. 0 ) e T X -1 be the maximum over A

independent estimates of y 2 Cr, 0) where one estimate is distributed according to (6) and

the remaining A-1 estimates are distributed according to (4). Then, the distribution
function of ZA is

2 =ep A- llx N - 1] x -,

FZ xIAN expLi A -I ) I/- x

N-2
_x Fl (-k, I - N: I : v" , 10

~I (l~ 2 2 :kN1x L (10)
k=0-



for 0 x< I . ne density function is given by

tZ (N-I) ( x)N-2
fZA X IA. N'"/-) =( - } x -

exp[- IA -, I I- xN-l] 1 - x-,2) -N ,F I I-N, I-N I x-y2,

N-2/

+ (A - I x .x l- , k  -2FI k, I- N; 1 ,)2) ll

k=0

for x < I.

Proof. Let r0 and 0o be tile location on the surface where the true coherence .
is nonzero. Then

Z = max (r, 0 (T. 0 E T X
-AA

where

ZA I  m x (r, 0): (7, 0) E T X 0 \ ](r0 , 00

and T X 0 \ I (r 0 , 00) is the set containing A - I points which excludes the point

(r 0  0L. Thus the distribution function of ZA is given by

F Z  xA, = PArN.O-OO2 .Z< x

Sr "-A-I

Fr,',# (70 0 X. Ny ZA- 1 N

" N,- y- FZA_ I i A -1. N, -y

which foll,ws t tml the fact that -Y2 (rO, O0) is independent of the other estimates



(7-r, 0) : (r, 0) E T X 0\ (ro, 00)1 , The distribution function F- (x I N, 2) is given

by (4) and the distribution function FZA- (x I A - 1, N, -y2 = 0) is given by (8) of

Theorem 1. The theorem now follows. 0

We note that when A = 1, the extreme value distribution function of Z given in (10)

reduces to the distribution function of a single point (with a signal present) on the PAS as
given in (6). Plots of the density functions (9) for a signal present are given in Figures 2 and
3 tor various surface sizes and different numbers of degrees of freedom. Note that as the maxi-
mum is taken over more estimates on the surface the density function "'shifts" to the right, as
would be expected. Also note that when Figure 2 is compared to Figure 3. the density functions
for an increased number of degrees of freedom N (Figure 3) have less "separation." Compar-
ing Figures I and 2 shows the change between noise only and noise plus signal present.

24.0

N 64

A 400 A10 
,2

000 0.05

U,

0
-)z

LL A1

Z

.- J

w

0.0
0.0 1.0

Figure 2. Density functions fz (x I A, N. y-) for ZA max j-, the maximum
-A

of the estimates of the MSC when a signal is present. (Surface size = A: degrees
of freedom = N; true MSC = y2.
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I-

z
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Figure 3. Density fucin z(x I A. N, y)) forZ.A = ma ,the maximum

of the estimates of" the MSC when a signal is present. (Surface size -- A; degrees
of freedom = N. true MSC = y2.)

4. APPLICATIONS TO D)ETECTION STATISTICS

In this section we apply the results of Theorems I and 2 to the problem of signal de-
tection on a passive ambiguity surface using thle maximum (or peak) value on the surface as
a detection statistic. We formulate a Neyman-Pearson hypotheses test and obtain expressions
for the prohability of false alarm and probability of detection in terms of the number of
degrees of freedom N (i.c., the number of independent segments of data), the size of the
passive anmbiguity surface A. and the true coherence y-.

Let the observation of the maximuim be

thlat is. 'A is the mnaximm value of the estimates of the MSC on a surface containing A points.
The hypothesis 110 of tihe Neyman-Pearson test is the case when no signal is present, which is
chiaracterized by a true coherence of y 2 = 0 for each estimate on a PAS of size A. Under H0

i I8

.. ..... . . . 7i I li IIIn



the observation A = ZA is described by the density function (7) given in Theorem 1. The

hypothesis H 1 is the case when a signal is present, i.e., the true coherence -Y2 is nonzero for

one particular pair of (T0 , 00) and is zero for the other A-I points on the surface. In this

case the observation 'A = ZA and has the density function (9) of Theorem 2. Thus, the

hypotheses test is

S. = ZA, p(X) = A (x IA, N, -2 = 0)

H1  : pA =  ZA " -P (x) = fZA (x IA 'N , y2  i=0 )

The probability of false alarm and probability of detection are now readily calculated as

QO = PFA (x0) p0 (X) dx

x0

= I - FZA (xOIA, N,-y2 = O)

and

I

Qd = PD'xO) = Pl(X)dx

x0

= 1 - FZA (xO IA. N, -y2 )

where the distribution functions FZA and Fz are given in (6) of Theorem I and, respectively,

in (8) of Theorem 2. We note that in Neyman-Pcarson type detection the probability of false

alarm is set at some predetermined value. Solving for the threshold x 0 in terms of the proba-

bility of false alarm Q0 gives

x0 = 1- [(-I /A)Qn ( - Q0

For the sake of comparison we also determine the detection performance of the MSC estimate

for a single point [61 171. In this case the hypotheses are

H 0  " y"= 3- , P0 (X ) = f'" (x IN ,3' -= ) :
2 xI . 0),

Hl1  p . pI(X) = f"(x IN, 2  0)

9 .
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where f- (x I N, Y2 = 0) is given by (5) and f (x I N, "y2 ) is given by (7). The probability

of false alarm and probability of detection arieasily calculated as above.

The comparisons between the detection performance of the "peak" (or maximum)
value of the estimates of the MSC on a PAS and a single estimate of the MSC are given in
Figures 4 through 6. In these figures receiver operating characteristic (ROC) curves depict
the detection performance. Figure 4 shows that the detection performance of the maximum
decreases as the size of the surface increases (with the degrees of freedom N and true coherence
7y2 both fixed). Figure 5 indicates the expected result that the probability of detection in-
creases as the true coherence increases. In Figure 6 the increase in the probability of detection
when the number of degrees of freedom also is increased is indicated. We note that in the
above figures the ROC curves for A = I can be obtained from [61.

Since the ROC curves presented in Figures 4 through 6 have a linear scale, the detec-
tion performance for small values of the probability of false alarm is difficult to determine.
Thus, in Figures 7 through 9 the probability of detection is plotted against 10 log1 0 (-j2 ),
where -y2 is the true coherence and the probability of false alarm is fixed. Figure 7 again
shows that the detection performance of the maximum degrades as the size of the surface
increases. In Figure 8 we see that increasing the probability of false alarm also increases the
probability of detection. Finally. the increase in the probability of detection as the number
of.degrees of freedom increases is indicated in Figure 9.

1.0 /" A=l/

A 400

0
I- N =64
U

y0.07
w
0

0.

0.0
0.0 1.0

PROB. FALSE ALARM

Figure 4. ROC curves for the detection statistic A= max t-. (Surface size = A;
degrees of freedom = N; true MSC = 2.)
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Figure 9. Detection curves t)r A = max -. Surface size = A; degrees of free-

dorn = N: Q0 = probafil(it f talse alarm. I

5. EXTENSION TO MULTIPLE COHERENCE

[he estim ate of the magnitude-squared muu ltiple coherence has also been considered
as a detecti(n statistic I 71. In this section we present a brief review 0f multiple coherence
and derime the extreme %,alutC statistics of the maximtim taken over estimates of the magni-
tude-squared multiple coherence. t'hese results are then used to obtain the detection per-
tOrnance of the estimate of the magnittide-sq oared Multiple coherence.

We let p designate the number of source channels receiving measurements. In

particular. the case of p 2 reduces to the magnitudc-SlLuared coherence IMSC) studied in
Sections 2 and 3. Le t X( t) = I XI(t) ..... Xp I)) T be a real, zero mean. (aussian vector ran-
dom process which is wide-sense stat ionary. lhe correlation matrix is defined by

R( t) II X "+ t )Xks1 N) ~R k (t)

where Rik t is the p by p matrix with elements R t I. lhe associated power spectral
densities are assuled to exist with

14



t4

00

Oikil)= f Rjkt It )- i 2r 't) dt

-00

for I JI i. k < p. and 1 f) i,, the spectral densit\ matrix

I he m IgnituIde-sqnir,'ed multiple coherence (MSM() is defined in terms of the power spectral
densit, miiatri, 0 ti alnd it', ier"C 0- 1 1) where thc elenents of 0 - 10 are designated by

The MSM(Cm -  1 . - 1.1+ I . of the itth channel is defined by

P7 I ....- l+l..f I - I Vjtft 1121

for - I. p. We note that the MSM( c i he obtaine'd iIdLilicti\Cl% in terms of the pairwise
com plc\ cohcrence I not n.gl I -d-,qtiare d coherece I as in dicaIed in : 81. Wec al o note
that when p= 2. thile MSM( /I I)(or p, Ii) reduc c , to the MSC y2 ' tldefined in (t and

For noi atioail Ic.:on\ clIni .c , , , e dcsignate the \ISM( 2 -(or m~ I f) ) and stppress the de-

peidncel on1 i. p. and lI or, respectivcl\, p).

Ihe MSM( CimateIL' fAit ii, forned t om an estinate oif the spectral densitN matrix

(,)I I I k I Id it, 11%cr-c I -t I . he MSM1( esti ate is gi" en b\

PuIi t tI

Whhen ,I sigllil Is b1sent. i.., the tiic \ISM( Is Ler. the distribution of the MSM(C estimate

i is ivi n b _ 11

0)

+ p + 13p

L a-,,Il



and the density function is

f .(N=) = xP-21 x)N-p (14)

Pu- I'(p- 1)f(N-p+ 1)

f-or tie case of a signal present. the distribution is given by [21 19]

N N-p

F - ( p N p ) p -I ( i M (p +) k)!

k=O

k( l tM-I- x I -F ] - k , p - I1 - N :p - I~ x p2  15 )

I1 xpu- -

and the density function is

f- (xxIp.N,t- = F(N)(I- p2)NxP-2(I-x)N-P 2N-p+l- F(p- I)r(N-p+l1)(l -xp2)

2FI (p-i -N,p- I -N:p- 1,xg " ) ) 16)

The following two theorems for the magnitude-squared multiple coherence extend

Theorems I and 2:

Theorem 1'. Let ZA = max 2 (r 0): (T 0) c T X 0 be the maximum over A

independent estimates of the MSMC and assume that the true multiple coherence for each

estimate is 0 (i.e., 2 = 0). Then the distribution function of pZA is

FPZA (x A. p, N, p- = 0)

N-I \ xKO.
exp A (l-xNp+I IA O x<l (17)

and the density function is

16



f/ZA x I A, p, N, 2= 0)

A / I INtpl\ I - x)N-P -x+ A N -I) (I X)Np(8= A 2 (Npl - e p - 18

for 0 < x < 1. and 0 otherwise.

Proof. As in Theorem 1 jiZA has a type 3 asymptotic distribution [51 since

-IF"--,x Ip, N. g'2=O = (l) x)N-p+1 + 0  Ix)N
- p+1 I

(- 
2

as x 1. The theorem now follows from the independence of the A estimates for the
MSMC. fl

Again we note that Theorem I is a special case of Theorem 1' when p = 2. We
now proceed to the case of a signal present in one of the estimates:

Theorem 2'. Let wZA = maxI / - (r,0): (r,0) e T X 0 be the maximum over A
independent estimates of the MSMC where one estimate is distributed according to (15)
and the remaining A-I estimates are distributed according to ( 13). Then the distribution
function of ZA is

F/4ZA (x I A. p, N,/

N ex I - I 1 x) N - p + I ]x p - I  A

CPI(A 1)(p - _ xPa2

N-p (p-2+k) U I-x ) k

(p 2)'k! ( ,FI(-k,p- I-N:pp: x) (19)
k=0

for 0 < x < 1. The density function is

f z A (x I A, p. N.u-)

p N) 2P N )(N - ) x)N-p+

17



(-. 12)
p-I-N FI (p- I -Np- I-N;p- x2

N-p

+(A- x(I- x)P-2 E _L2-2+k') !  I-x -

k (p - 2)! k! I U2)
k=O

XF (- k, p - 1-N'p- 1: xp 2)2 (20)

for 0 < x < I.

Proof. Proceeding as in the proof of Theorem 2, we obtain

FqZ (xIA, p.NP2) = F-(xIp, N.p2) FZA- (x IA- l.p,N, p20)A Ya- A-]

and the theorem now follows directly from (1 7) of Theorem I' and (15). E

Plots of the density functions 'Z A (x I A, p. N,/M2 = 0) and fAZA (x I A, p, N. M2)

are given in Figures 10 through 14. Figure 10 shows plots of the density function (18) when

only noise is present. (See Figure 1 for the case p = 2.) In Figure 1 1, the effect of increasing

the number of source channels p is shown. The effect of increasing the surface size A is

shown in Figure 12: also, the effect of changing the number of source channels p is contrasted

between Figure 1 2a and 1 2b. The effect of changing the true multiple coherence A2 is indi-

cated in Figure 13. Finally, Figure 14 indicates the result of changing the number of degrees
of freedom.

As in the case of the MSC estimates which form a passive ambiguity surface, Neyman-

Pearson type signal detection hypotheses can be formulated by using the maximum value of
the estimate of niagnitude-squared multiple coherence as a detection statistic. In this case,

tile measurement

mA = ax 't-',7. 0(r, 0) T X 9

has either the distribution under 110 defined by

1-1o A = /ZA -"Po(x ) = fz A (x A.p, N,p2-=0)

or. under Ill when a signal is present

1

Ill *M'A = P4A" PI(x) =  ftaZA(X A, p,N.P2).

18
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Figure 10. Density functions f tZA (x I A. p, N. p 2 0) for MZA max p-. the

maximum of the estimates of the MSMC with noise only present. (Surface size

= A: degrees of freedom = N: number of channels = p, true MSMC = 2.
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the estimates of thle MSMC when a signal is present. (Surface size A: degrees of
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Figure I 2a. Density functions for gZ A (ZA). the maximum of the estimate of

the MSMC (MSC) when a signal is present. Since p = 2, p- = -y and PZA = ZA .

(Surface size A- degrees of freedom = N number of channels p: true MSMC
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Figure 12b. Density functions for IZA , the maximum of the estimate of the

MSMC when a signal is present. (Surface size = A: degrees of freedom = N:
number of channels p; true MSMC = U.)
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Figure 13. Density functions f/ZA (x I A. p, N, p2 for PZA, the maximum of

the MSMC estimates when a signal is present. (Surface size = A. degrees of free-
dor = N: number of channels p: true MSMC = 2.)
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Figure 14. Density functions fI-, A (x I A, p. N, p21 for .Z A, the maximum of

the estimates of the MSMC when a signal is present. (Surface size = A; degrees
of freedom = N: number of channels = p; true MSMC =2.
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where flZA and f _ZA are given by ( 18) and (20), respectively. The probability of false

alarn and probability ot detection, for the maximum estimate of the MSMC, are given by

Q0 = I - FALZA(Xo I A. p, N. M2 = 0)

Qd = 1 - F PZA (x0 I A, P, N, P-)

where FPZ is given by 17) and FPZ is given by (19). The probabilities of false alarm and

detection for a single estimate of the MSMC are also easily calculated as

QO = 1-F- (xOlP. N.Ma-=O

=Qd -F-%".(x 0 I p. N.p 2

S _ -

where F-, and F are given by (13), and respectively. (15).

The ROC curves for the peak value of the MSMC are presented in Figures 15
through 18. The curves for A = I can be obtained from [ 71. In Figure 15 the effects of
increasing the number of source channels p is shown to decrease the probability of detec-
tion. (See the discussion in Section 6.) Also, the effects of increasing the number of estimates
A over which the maximum is taken, i.e., increasing the surface size, are again shown to de-
crease the probability of detection: this is clearly demonstrated in Figure 16. In Figure 15,
the effect of increasing the true multiple coherence p 2 is shown to increase the probability
of detection. The effect of increasing N (the number of degrees of freedoml is shown in
Figure 16 to increase the probability of detection.

Figures 19 through 22 are graphs of the probability of detection versus 10 log1 0

(MSMC) when the probability of false alarm is fixed. Figure 19 shows that the effect of in-
creasing the number of source channels p results in a decrease in the probability of detec-
tion (again, see the discussion in Section 6). The effect of increasing the surface size A is
shown in Figure 20 -- the probability of detection decreases. Figure 21 shows the expected
result that the probability of detection decreases as the probability of false alarm decreases.
Finally, we see in Figure 22 that increasing the number of degrees of freedom increases the
probability of detection.

We conclude by addressing the fact that the probability of detection decreases as
the number of source channels p increases tinder the assumption that the numerical value
of the multiple coherence remains fixed. This is, perhaps, difficult to understand since the
basic definition of multiple coherence changes as the number of source channels changes.
As indicated in 171, the signal-to-noise ratio (SNR) in the individual channels must decrease
in order that the "multiple coherence" stays constant when the number of source channels
increases (tinder the assumption of equal SNR in all channels). However, this is only a partial
explanation.
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Figure 1 5. ROC curves for the magnitude-squared multiple coherence detection
statistic 14 A =max p-. (Surface size =A; degrees of freedom = N; number of
channels = p; true MSMC =p

To better understand multiple coherence we compare the following two cases that
are based on the assumption that the SNR in the individual channels are equal. The equal
SNR in each channel implies that the magnitude-squared multiple coherence j Pfor p
channels) and SNR (denoted R) are related by [7]

(21

2~ (p-1

(lI+ R) ( I+(p-I) R)21

For case 1. let p = 2 and p = 0.07(=y2). From (21) we have that R 0.359(= SNR). For

case 2. let p = 3 and let the SNR be as determined above, R = 0.359. Thus the magnitude-
Squared multiple coherence is equal to p 0. 11. We now compare case I where p = 2 and

chnn2 = ;tu SC = 1 .

r 0.07 with case 2 where pt 3 ad S3 0. 11. The comparison is given in Figure 23. where
the expected result of an increase in the probability of detection occurs when the SNR in the

individual channels is held constant and the number of channels is increased.
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Figure 16. ROC curves for the magnitude-squared multiple coherence detection

statistic /A=max u.-. (Surface size Ak degrees of freedom N; number of
channels =p: true MSMC =.U
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Figure 19. Detection curves for the magnitude-squared multiple coherence de-
tection statistic PA=max U'y 2' (Surface size = A. degrees of freedom = N;
probability of false alarm Q0; number of channels = p.)
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Figure 20. D~etection curves for the magnitude-squared multiple coherence de-
tection statistic II A max Pi-. (Surface size =A; degrees of freedom =N; prob-
ability of false alarm Q0; number of channels p.)
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Figure 21. Detection curves for the magnitude-squared multiple coherence de-
tectin sttstc = max pi-. (Surface size =A; degrees of freedom =N; prob-

ability of false alarm =Q0 ; number of channels =p.)
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6. CONCLUSIONS

lIc e prt orinance (ot the c\treinurn 4or peak on a passive am ihiguity surface as a
dctect lion statistic has beenl derived inl Section 4 for thle case of inagn itudeI-Squared coherence
aid, III Scon01 5. tn thle Case Of tile magnitudC-SquLarcd multiple cohierence. The t'ollowing
LIrIIriUnS101. '% alrd for hoth icss can be drawn:

III I lie probhbilM of'.i detet ion decreases as1 tile si/c 0t thle surface increases. Ani

11In tuit splitiori o1 til' lvha ior is that as thle sr/c of' theC sutaIc is increased. more noise
is IaddedI ntI0o t che t sr\ atIIA Io %\Ia\ -y- to r. inl1] the cse Of' IIIl tipl I)IC:oherenice.

-11 lr'u p- v. I his IN a diret I irlsc(ltc oft thle assumption that a signal is present inl
Ol Irc o)f tir es irNles fL- huel lite othecr estinates are baised onl observations which contain
ii rso. Oril\ I Inis InitcasrIn tire surfaic si/c A implies that only nois\ data arc incorpomzred

inlto tire rrMirreintad that nok contr1)ibtionl Of SIrnL,1 information is made. As a coi,;e-

k1LWII~t. tHe skllrtace* Nsi.C should 11c chosenl to he as small as. possible but vet large enIourzh1 to
,'nrsi rv t hat i t, sir-nda Is o)I I'lIrIed (I \ItIh In tihre s rIta '

Ilie- pIrlxibilrt \ (Ii deetii nccascs as, thle true colierence I- Increases (or as

i11c te rlt irie 11licreihe 1111hr c , IN s isaC\)cAccd result1 wkhicI holds true Inl thle

AIL' '' J nwl estritirte s1111 L J Mirrl 11itd Ill I I .

I I Ii prbbiit 0I leteftt 110 re1se asl IJ the l it herIIIC of dicirecs ofi freedom N

In, reisCs I j, lilt, 1umberc ti drs, melte I Mlliie tran1storins ascragckd to oIbrain all estirniate11

ii.d, i Isi \Leiini 111is Is ai tcjp' It'dl Iresult \%nch 1 also hN o Wlds tru bRI 0 ithe snglleI estIiate

14 lre pibrisilit' (fl (IlCte,10 Il iii rrceass a' tile 11,u11Me tsn Of SO r ,nncls isI

Mid. iedi ilt rssiriiipli'ilr IIti Il,, srnlt-risai,, ist, sauvne inl ech of thic

,ili l i 111 11iririne (Ill ie olici 11.11id lite PlhrhrhitN it dICte, t1011 de, rease as t ire11 rumlhe'r

iii.. ~ m iiies is i.nc'It wlderl 11W rssriMuiorI 11it tire' innirlt[Ipl oI ec 11Ctis' INuIsedk



7. GLOSSARY

ABBREVIATIONS

MvSmC Magnlitude-squared multiple coherence
PAS Passive anibillUitN surface

ROC Receiver operating characteristics

SN R Signal-to-noise ratio

SYMBOLS

(a Pochhanimer's sN mbol

A Size of the ambigiLit U trtace

- I GJUSS tih ypergeomlet ncf ct'Lion0

f- it. k 11wli Four-ier coefficienlt at the freqJUC\I I f rom the 1,th

discrete Fourier transtorm ( D I of the process ( t i

F-^ N . -y 0I 1 istribution tWnction ot the MSC estilte %khen the true
y- ~coherenc:e is zero I signal ibsent

['--ti N. - I litribut iou fltlion of the \IS( estimate \klihen the Irule

- cotierence is nonzero (signal present)

AY N. - 0) D1,41t11111tion tunj,11 iofo the masiium over MS( estimlats

%% hei the true crcmie is zoero isial besent

I, \ A. I. y istibhution tImicion of the m\i\ nim e Mlie te tae
A sdien the true Loliernce is o vnzer bscienlprsn

I p. N. \ p.i Distribuitioin tfuction ot the MiS.\1 estimlate when the true

nilt1111 p iecrencc is nozero siial b ese

I .N. - 01 Distribuition f~tucti ot the nm mnvr\S\1( ' estimates etu

when the true coheirnc is Lero isignal absent)

I i A ,.. N. pi l11,istriti lHtulo ot the niaimum~T1 over \ISM( estimiates
whenci thte true cohierence, is nonzero I signal present

-- ( . it I %laL'iiitulde-squaredI co0herecel (aid its estimiate i

- it . . f - it. r.HiMntdesuae oirenc corrected for time lCa\ anid

doppler iand its est imate I

)-IT. to I. )I T. t I Same as the above 5% it h tie (req ueneC\ t suppressed

I \...... Multipl cotiren~c ot diaiil I ompare~td to the otliei
p-I chann1fels

p /A MIa \im ji over A estimates oft Ihe MISM( s\ lien no signal

is presen'
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11ZA Maximum over A estimates of the MSMC when a signal is

present

,UA The measurement over the maximum of A estimates of the
MSMC

,P- The MSMC when the SNR is equal in all channels

N Degrees of freedom (or the number of independent samples)

in the MSC or MSMC estimate

p Number of channels

0 jk Ojk ( f) Cross-spectral density between channel j and channel k
(or auto-spectral density when j=k) and its estimate

A

t I f 0ql'Cross-spectral density matrix with elements Ojk(f) and its
estimate

Qdt Probability of detection

Q0 Probability of false alarm

Rikt Cross-correlation function between channel j and channel

k (or auto-correlation function when J=k)
R it) Cross-correlation matrix with elements it)

T Set of time delays at which MSC estimates are calculated

H Set of doppler shifts at which \ISC estimates are calculated

\i(t l)ata in channel i

\ tt Vector of data ( x 1 (t).. p(t

/ A  Maximum over A estimates of the MSC when no signal

is present

A  Maximum over A estimates of the MSC when a signal is
present

The measurement of the MSC

A 71The measurement over the maximum of A estimates of

the MS(
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